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1 Introduction

Temporal logic is considered an important tool in many different areas of Artificial Intelligence and Computer Sci-
ence, including the specification and verification of concurrent and distributed systems. Computational Tree Logic CTL
(Clarke and Emerson, 1982) is a branching-time temporal logic. Here we present the first resolution theorem prover for
CTL, CTL-RP, which implements the sound and complete clausal resolution calculusR≻,S

CTL (Zhang et al., 2008) based
on an earlier calculus by Bolotov (2000). The calculusR

≻,S
CTL is designed in order to allow the use of classical first-order

resolution techniques to emulate the rules of the calculus.We take advantage of this approach in the development of our
prover CTL-RP which uses the first-order theorem prover SPASS (Weidenbach et al., 2007).

2 Normal form for CTL SNF
g
CTL and clausal resolution calculus R

≻,S
CTL

The calculusR≻,S
CTL operates on formulae in a clausal normal form called Separated Normal Form with Global Clauses

for CTL, denoted bySNFg
CTL. The language ofSNFg

CTL clauses is defined over an extension of CTL in which we label
certain formulae with an indexind taken from a countably infinite index setInd and it consists of formulae of the following
form.
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wherestart is a propositional constant,li (1 ≤ i ≤ n), mj (1 ≤ j ≤ k) andl are literals, that is atomic propositions
or their negation,ind is an element ofInd. The symbolsind andLC(ind) represent indices and limit closure of indices,
respectively. As all clauses are of the formA2(P ⇒ D) we often simply writeP ⇒ D instead.

We have defined a set of transformation rules which allows us to transform an arbitrary CTL formula into an equi-
satisfiable set ofSNFg

CTL clauses, a complete description of which can be found in (Zhang et al., 2008). The transforma-
tion rules are similar to those in (Bolotov, 2000), but modified to allow for global clauses.

R
≻,S
CTL consists of two types of resolution rules,step resolution rules (SRES1 to SRES8) andeventuality resolution rules

(ERES1 and ERES2). Motivated by refinements of propositional and first-order resolution, we restrict the applicabilityof
step resolution rules by means of an atom ordering≻ and a selection functionS, which helps to prune the search space
dramatically. Due to lack of space, we only present two of thestep resolution rules and one of the eventuality resolution
rules. In the followingl is a literal,P andQ are conjunctions of literals, andC andD are disjunctions of literals.

SRES2
P ⇒ E#(C ∨ l)〈ind〉, Q ⇒ A#(D ∨ ¬l)

P ∧ Q ⇒ E#(C ∨ D)〈ind〉

SRES3
P ⇒ E#(C ∨ l)〈ind〉, Q ⇒ E#(D ∨ ¬l)〈ind〉

P ∧ Q ⇒ E#(C ∨ D)〈ind〉

ERES1
P † ⇒ E#E2l, Q ⇒ A3¬l

Q ⇒ A(¬P † W ¬l)

whereP † ⇒ E#E2l represents a set ofSNFg
CTL clauses

which together implyP † ⇒ E#E2l.

We develop a new completeness proof with a different approach from (Bolotov, 2000). The proof also shows that
some eventuality resolution rules in (Bolotov, 2000), which are the most costly rules of the calculus, are redundant. The
inference rules ofR≻,S

CTL can be used to decide the satisfiability of a given setN of SNFg
CTL clauses by computing the

saturationN ′ of N using at most an exponential number of inference steps;N is unsatisfiable iffN ′ contains a clause
true ⇒ false or start ⇒ false. This gives a complexity optimal EXPTIME decision procedure for CTL.
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Figure 1: Performance on a set of benchmark formulae

3 CTL-RP

In order to obtain an efficient CTL theorem prover and to reuseexisting state-of-the-art first-order resolution theorem
provers, we adopt an approach analogous to that used in (Hustadt and Konev, 2004) to implement a resolution calculus
for PLTL to implement the calculusR≻,S

CTL and the associated decision procedure for CTL. A formal description of the
approach and related proofs are presented in detail in (Zhang et al., 2008).

In our implementation ofR≻,S
CTL, we first transform all SNFgCTL clauses exceptA- andE-sometime clauses into first-

order clauses. Then we are able to use first-order ordered resolution with selection to emulate step resolution. For this
part of the implementation we are using the theorem prover SPASS.A- andE-sometime clauses cannot be translated to
first-order logic. Therefore, we continue to use the eventuality resolution rules ERES1 and ERES2 for inferences withA-
andE-sometime clauses, respectively, and use the loop search algorithm presented in (Bolotov and Dixon, 2000) to find
suitable premises for these rules. We utilise first-order ordered resolution with selection to perform the most costly task of
“looking for merged clauses” in the loop search algorithm and we compute the results of applications of the eventuality
resolution rules in the form of first-order clauses.

Besides CTL-RP, there is only one other CTL theorem prover weknow of, namely a CTL module for the Tableau
Workbench (TWB) (Abate and Goré, 2003). We have created several sets of benchmark formulae that we have used to
compare CTL-RP version 00.09 with TWB version 3.4. The comparison was performed on a Linux PC with an Intel Core
2 CPU@2.13 GHz and 3G main memory, using the Fedora 9 operating system. In Figure 1, we show the experimental
results on one of those sets of benchmark formulae. This set of benchmark formulae consists of one hundred formulae
such that each formula specifies a randomly generated state transition system. The graph in Figure 1 indicates the CPU
time in seconds required by TWB and CTL-RP to establish the satisfiability or unsatisfiability of each benchmark formula
in the set of benchmark formulae. CTL-RP shows a much more stable performance on these benchmarks than TWB.
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