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Abstract

We introduce improvements for second-order quantifier
elimination methods based on Ackermann’s Lemma and
investigates their application in modal correspondence
theory. In particular, we define refined calculi and pro-
cedures for solving the problem of eliminating quanti-
fied propositional symbols from modal formulae. We
prove correctness results and use the approach to compute
first-order frame correspondence properties for modal ax-
ioms and modal rules. Our approach can solve two new
classes of formulae with wider scope than existing classes
known to be solvable by second-order quantifier elimina-
tion methods.

1 Second-Order Quantifier Elimi-
nation

An application of second-order quantifier elimination is
correspondence theory in modal logic. Propositional
modal logics, when defined axiomatically, have a second-
order flavour, but can often be characterized by classes
of model structures which satisfy first-order conditions.
Frequently, with the help of second-order quantifier elim-
ination methods, these first-order conditions, called frame
correspondence properties, can be automatically derived
from the axioms. For example, using the standard rela-
tional translation method the modal axiomD = ∀p[�p →

♦p] translates to this second-order formula:

∀P∀x[∀y[R(x, y) → P (y)] (1)

→ ∃z[R(x, z) ∧ P (z)]].

This formula is equivalent to a first-order formula, namely
∀x∃y[R(x, y)], and is the first-order correspondence
property of axiomD. It can be derived automatically with
a second-order quantifier elimination method by eliminat-
ing the second-order quantifier∀P from (1).

Several second-order quantifier elimination meth-
ods exist. These methods belong to two categories:
(i) substitution-rewrite approaches which exploit mono-
tonicity properties, and (ii) saturation approaches, which
are based on exhaustive deduction of consequences.
Methods following the substitution-rewrite approach in-
clude the Sahlqvist-van Benthem substitution method for
modal logic, the DLS algorithm introduced by Szalas

in (1993) and together with Doherty and Lukaszewicz
in (1997), the SQEMA algorithm for modal logic intro-
duced by Conradie, Goranko and Vakarelov in (2006).
Methods following the saturation approach include the
SCAN algorithm of Gabbay and Ohlbach (1992), and hi-
erarchical resolution of Bachmair, Ganzinger and Wald-
mann (1994).

Here, I am interested in methods using the substitution-
rewrite approach to second-order quantifier elimination.
In particular, my focus is on methods that are based on a
general substitution property found in Ackermann (1935).
This result, calledAckermann’s Lemma, tells us when
quantified predicate symbols are eliminable from second-
order formulae. For propositional and modal logic Ack-
ermann’s Lemma can be formulated as follows. In any
model,

∃p[(α → p) ∧ β(p)] is equivalent to βp
α, (2)

provided these two conditions hold: (i)p is a proposi-
tional symbol that does not occur inα, and (ii) p occurs
only negatively inβ. The formulaβp

α denotes the formula
obtained fromβ by uniformly substitutingα for all oc-
currences ofp in β. This property is also true, when the
polarity ofp is switched, that is, all occurrences ofp in β
are positive and the implication in the left conjunct is re-
versed. Applied from left-to-right the equivalence (2) of
Ackermann’s Lemma eliminates the second-order quanti-
fier ∃p. In fact, all occurrences ofp are eliminated. This
idea can be turned into an algorithm for eliminating exis-
tentially quantified propositional symbols. I refer to this
algorithm as thebasic Ackermann algorithm.

2 A Refined Ackermann Approach

Based on the basic Ackermann algorithm I introduce a
refined second-order quantifier elimination approach for
modal logic. Like the SQEMA algorithm, rather than
translating the modal axiom into second-order logic and
then passing it to a second-order quantifier elimination
method, the approach performs second-order quantifier
elimination directly in modal logic. Only in a sub-
sequent step the translation to first-order logic is per-
formed. For example, given the second-order modal for-
mula∀p[�p → ♦p], the approach first eliminates∀p from
the formula and returns the formula♦⊤. Subsequently



this is translated to first-order logic to give the expected
seriality property∀x∃y[R(x, y)].

The approach is defined for propositional multi-modal
tense logics, more precisely, the logicKn

(m)(
`, π+) with

forward and backward looking modalities, nominals, and
second-order quantification over propositional symbols.

A main motivation for this work has been to gain a
better understanding of when quantifier elimination meth-
ods succeed, and to pinpoint precisely which techniques
are crucial for successful termination. I define two new
classes of formulae for which the approach succeeds:
the classC and an algorithmic version calledC>. The
classes define normal forms for when Ackermann-based
second-order quantifier elimination methods succeed.C

and C
> subsume both the Sahlqvist class of formulae

and the class of monadic-inductive formulae of Goranko
and Vakarelov (2006). I present minimal requirements
for successful termination for all these classes. This al-
lows existing results of second-order quantifier elimina-
tion methods to sharpened and strengthened.

I consider two applications of the approach:

(i) Computing correspondence properties for modal
axioms and modal rules. For example, equiva-
lently reducing axiomD to the seriality property,
or equivalently reducing the modal rule�p/♦p to
∀x∃y∃z[R(x, y) ∧ R(z, y)].

(ii) Equivalently reducing of second-order modal prob-
lems. For example, the second-order modal formula
∀p∀q[�(p ∨ q) → (�p ∨ �q)] equivalent reduces
to ∀p[♦p → �p], or the axiomD equivalently re-
duces to♦⊤.

While the approach follows the idea of the basic Ack-
ermann algorithm and is closely related to the DLS algo-
rithm and the SQEMA algorithm, I introduce a variety of
enhancements and novel techniques.

First, which propositional symbols are to be eliminated
can be flexibly specified, and the approach is not lim-
ited to eliminating all propositional symbols. Second, in
order to be able to ensure effectiveness and avoid unin-
tended looping, the approach is enhanced with ordering
refinements. In the approach an ordering on the non-base
symbols (these are the symbols that we want to elimi-
nate) must be specified and determines the order in which
these symbols are eliminated. At the same time the or-
dering is used to delimit the way that the inference rules
are applied. It turns out, that the adoption of ordering
refinements allows for a more in-depth analysis of how
the inferences are performed and a better understanding
of the properties of the approach. Third, for reasons of
efficiency, and improved success rate, it is beneficial to
incorporate techniques for pruning the search space. A
general notion of redundancy is thus included. It is de-
signed so that it is possible to define practical simplifica-
tion and optimization techniques in a flexible way. Fourth,
the approach is defined in terms of calculi given by sets of

inference rules. This has the advantage that the approach
can be studied independently of practical issues such as
rule application order, strategies and heuristics. It allows
for a more fine-grained analysis of the computational be-
haviour of the approach and more general results can be
formulated.

3 Results

The following results have been obtained.

1. Any derivation in the approach is guaranteed to ter-
minate and the obtained formula is logically equiv-
alent to the input formula. This means the refined
modal Ackermann calculus is correct and terminat-
ing.

2. Any problem in the classC> is effectively and suc-
cessfully reducible by the rules of the approach using
some ordering.

3. For the subclassC of C>, the sign switching rule,
redundancy elimination are not needed, and the or-
dering is immaterial.

4. Whenever the approach successfully eliminates all
propositional symbols for a modal formulaα then
(a) ¬α is d-persistent and hence canonical, and
(b) the formula returned is equivalent toα.

5. All modal axioms equivalent to the conjunction of
formulae reducible to clauses inC andC> are ele-
mentary and canonical.

These results are improvements for substitution-rewrite
approaches based on Ackermann’s Lemma, and present
strengthenings of Sahlqvist’s theorem and the corre-
sponding result for monadic-inductive formulae.

The significance of the last result is that axioms that are
equivalent to first-order properties and are canonical can
be used to provide sound and complete axiomatizations
of modal logics.

4 Further details

For a full account of the approach and the results, I refer
to Schmidt (2008) and Chapter 13 in Gabbay et al. (2008).
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