
Semantic Embedding of Promela-Lite in PVS

Shamim H Ripon∗Alice Miller
∗

Department of Computing Science
University of Glasgow

{shamim,alice}@dcs.gla.ac.uk

1 Introduction
Promela-Lite [3] is a specification language which captures the essential features of Promela [4]. Unlike Promela a full
grammar and type system of the language, and Kripke structure semantics of Promela-Lite specification have been defined
and used to prove the correctness of automatic symmetry detection techniques used in Promela.

Mechanical verification is widely used as a tool to verify the properties of a language. It allows one to identify
potential flaws in the language and gives confidence in the language definition. Theorem provers are heavily used as a tool
to mechanically verify language properties. The language is to be embedded into the theorem prover for this purpose. Here
we outline work in progress to embed Promela-Lite syntax and semantics into the general purpose theorem prover PVS [5]
and use these embeddings to interactively prove both consistency with the syntax/semantics definitions and language
properties.

2 Promela-Lite
Promela-Lite includes the core features of Promela including parameterised processes, channels (first class) and global
variables, but omits some features such as rendez-vous channels, enumerated and record types, and arrays. The syntax
of Promela-Lite is specified by using the standard BNF form [1] summarised in Figure 1(a). The language has primitive
datatypes and channel types of the form chan{T}, where T is comma separated list of types (details in [3]). A Promela-Lite
specification consists of a series of channel and global variable declarations, one or more proctypes and an init process.
Part of Promela-Lite syntax is shown as a production rule in Figure 1(b), where only the syntax of expr is presented.

〈type〉::= int

| pid

| 〈chantype〉
| 〈typevar〉

〈chantype〉 ::= 〈recursive〉? chan {〈type − list , ‘,′ 〉}
〈recursive〉 ::= rec 〈typevar〉
〈typevar〉 ::= 〈name〉

(a) Promela-Lite type systax

〈expr〉 ::= 〈name〉
| 〈number〉
| pid

| null

| len(〈name〉)
| (〈expr〉)
| 〈expr〉 ◦ 〈expr〉 (where ◦ ∈ {+,−, ∗})

(b) Syntax for expr

Figure 1: Promela-lite syntax

A Promela-Lite specification is considered to be well-typed if its statements and declarations are well-typed according
to the typing rules. The typing rules of Promela-Lite are defined by following the notation used in [2]. For example, the
typing rule for 〈expr〉 ◦ 〈expr〉 in Figure 1(b) is defined as follows:

Γ ` e1 : int Γ ` e2 : int ◦ ∈ {+,−, ∗}
Γ ` e1 ◦ e2 : int

The semantics of a Promela-Lite specification P is denoted as a Kripke structure M. If P is well-typed according to
the typing rules then the Kripke structure M is well-defined. A function evalp,i is defined that evaluates an expression e
for a process i at state s, where proctype(i) = p. For the syntax of expr mentioned earlier, evalp,i is used to evaluate the
expressions at a given state as follows (details in [3]):

eval p,i(s, e1 ◦ e2) = eval p,i(s, e1) ◦ eval p,i(s, e2) where ◦ ∈ {+,−, ∗}
∗This author is supported by EPSRC grant EP/E032354/1



3 PVS Embedding

Promela-Lite

Syntax

Semantics

Properties

PVS
Define

Properties
Prove Properties

Figure 2: Mechanisation steps

An embedding is a semantic encoding of one
specification language into another. There are
two main variants for the embeddings: shallow
and deep embeddings [6]. In a shallow embed-
ding, a program or a specification is translated
into a semantically equivalent representation of
the host logic. In a deep embedding, the lan-
guage and the semantics are fully formalised
in the logic of the specification language. This
allows reasoning about the language itself, not
just concrete programs.

Our mechanisation is based on deep em-
bedding. Figure 2 briefly outlines the steps that
we follow to mechanise Promela-Lite in PVS.
The syntax of the language is defined using the
abstract datatype mechanism of PVS which allows recursive definitions over the terms of the language. The definition is
similar to the traditional use of BNF to define the syntax. The datatype definition enumerates constructors, lists their pa-
rameters, and provides recogniser predicates. Part of the datatype definition to define the syntax of expr (〈expr〉 ◦ 〈expr〉)
is shown here:

expr_syntax : DATATYPE
BEGIN
plus (e1:expr_syntax, e2:expr_syntax) : plus?
minus(e1:expr_syntax, e2:expr_syntax) : minus?
star (e1:expr_syntax, e2:expr_syntax) : star?
...

END expr_syntax

The semantics are defined recursively by following the original definitions. Care has to be taken to ensure that these
definitions follow the typing rules. Following the definitions of how expressions are evaluated, a recursive definition is
given to the semantics, part of which is shown as follows:

sem(e : expr_syntax, env: environment, s : STATE): RECURSIVE VALUE =
CASES e OF
plus(e1,e2) : integer_value(intvalue(sem(e1,env,s)) + intvalue(sem(e2,env,s))
...

ENDCASES MEASURE BY <<

After embedding the semantics, the properties to be proved will be defined in the form of theorems and supporting
lemmas, and proved using the interactive theorem prover.

References
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers – Principles, Techniques, and Tools. Addison-Wesley,

1986.

[2] Luca Cardelli. The Computer Science and Engineering Handbook, chapter Type Systems, pages 2208 – 2236. CRC
Press, Boca Raton, 1997.

[3] Alastair F. Donaldson and Alice Miller. Automatic symmetry detection for promela. Journal of Automated Reasoning,
41:251–293, 2008.

[4] Gerard J. Holzman. The SPIN MODEL CHECKER: Primer and Reference Manual. Addison-Wesley, 2003.

[5] Sam Owre, J.M. Rushby, and N Shankar. PVS: A Prototype Verification System. In Deepak Kapur, editor, CADE’92,
volume 607 of LNAI, pages 748–752. Springer-Verlag, June 1992.

[6] R. Boulton, A. Gordon, M.J.C. Gordon, J. Herbert, and J. van Tassel. Experience with embedding hardware description
languages in HOL. In TPCD’93, pages 129–156. North-Holland, 1993.


