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1 Introduction

Computationally simple but cryptographically strong @phplay an important role for efficient Computer Securigks

It is suggested in (Knapskog, 2008) that there is a need foplsi cryptographic primitives to implement security in
an environment with end users connected with terminalsnggiimited storage and processing power. Constructing
ciphers using the algebraic structures of Quasigroup léagsarticular simple yet efficient ciphers. Quasigroups are
structures very similar to groups with the primary diffecerthat they are in general not associative. Stream cipberbe
constructed from quasigroups using a permutation baseddding technique (Maruti, 2006). For security considerat

the main goal of the scrambler is to maximize the entropy eftfoduced output. Depending on the quasigroup used the
cryptographic strength of the cipher can vary significaritiyorder to find strong ciphers quasigroups have to be géstbra
and the resulting ciphers are tested with respect to stdnstatistical methods. Quasigroups are then categorised as
cryptographically strong or weak according to the outcorfrithese tests.

In our research we aim to tackle the problem from a differemgle. We consider quasigroups that have already
been categorised with respect to their cryptographic ptagse We then automatically classify these quasigrouphk wi
respect to their algebraic properties, with the goal to ilgproperties common to cryptographically strong quasigps
in order to use them for a goal directed construction of cgrasips for strong ciphers. Our work builds on previous
work (Sorge et al., 2008) that was concerned with the geioeratf classification theorems in quasigroup theory. A
bootstrapping algorithm was designed to successivelyeadirlassification of quasigroups of a given finite order by
constructing algebraic invariants using machine leartémtpniques, until a full classification into non-equivalelasses
was achieved. The procedure incorporated a set of divees®ning techniques, including first order resolution tkeeor
proving, model generation, satisfiability solving and cartgp algebra methods, and was successfully applied to peodu
a number of novel classification theorems for loops and guesps with respect to isomorphism and isotopism.

2 Quasigroup Ciphers

Following (Pflugfelder, 1990), a quasigrogpcan be defined as a group of elemefit2, 3...n) along with a multiplica-
tion operator ', such that for every element y € @, there exists a unique solutianc @ such that the following two
conditions hold Q) *xa = z,and )y b = z, where the elements b andz belong to the Quasigroup.
These conditions ensure that a quasigroup can also be viesvad.atin square; that is, each elemenfajccurs exactly
once in each row and each column of the multiplication taklnihg «’. Conditions (1) and (2) essentially postulate the
existence of unique left and right divisors for each elenier. This gives rise to an explicit definition of left and right
division operations:

Let (Q, o) be a Quasigroup, then two operationand/ on Q can be defined as:

(3) zx(z\y)=y and z\(zxy)=y (4) (y/z)xx=y and (yxz)/z=y

The following is an example of a Quasigro@pof order4 given in terms of multiplication tables for all three opeéoats:

*T1[2[3][4 \[1]2]3[4 [{1]2]3]4
1]2(3][1[4 1]3[1]2[4 1[4(2[1]3
24132 212431 21432
33421 3[4[3[1]2 3[3[1]24
411243 41243 42343




Quasigroup Encryption

We can now define a quasigroup cipher in terms of encryptidrdacryption function following (Dimitrova and Markovski,
2004). Let(Q, *,\, /) be a Quasigroup ang, as, as, ...,a, € Q. We define the encryption functiali with respect to
the keya € @ as

Ea(al, a2, as, ..., an) = bl, bg, b3, bn

whereby, ba, bs, ..., b, € Q are computed by (5 = a x a1, and (iib; = b;—q xa;, fori =2,... n.

Quasigroup Decryption

The decryption process is similar to the encryption but &iedivision operation\’ is used as operation. The decryption
function D is then define as:
Dq(a1,az,a3,...a,) = e1,e2,€3...€,

where the original plaintext is computed by €i) = a\a1, and (i)e; = a;—1\a;, fori =2,...,n.

3 Examining Cryptographic Properties

The cryptographic properties of quasigroup ciphers amnarily determined by subjecting the resulting pseudo-camd
sequences to statistical tests for randomness. In (Makketsl., 2004) eight bespoke statistical tests are peréoriyy
random walk on torus examining the properties of stringsimetd from specific quasigroup transformations. This can
provide an empirical classification of Quasigroups withpesg to their cryptographic hardness. However, exhaustage
sification of quasigroups is prohibitive even for small sioé quasigroups due to the sheer number of different strestu
to consider. For example, there are o2er103° different isomorphism classes of quasigroups of ofdefMcKay et al.,
2004). Moreover, (Markovski et al., 2004) shows that quasigs belonging to the same isomorphism class can behave
differently with respect to their cryptopgraphic propegiand therefore considering quasigroups up to isomorphsund

not be enough. In (Koscielny, 2002) a system for generatiragigroups for cryptographic applications is presenteuhgi

a set of procedures implemented in Maple 7. Itis also stéitgdptractical ciphers should be constructed using quagigro
of order betwee2 and256. Since the generation of structures of this size is nonatfithe construction of larger quasi-
groups is done via composition of smaller ones and crypfagcgproperties are lifted from the smaller to larger stunes.
Nevertheless the final cryptographic hardness can only sered using randomness test.

The goal of our work is to use these results as a bases on whathrt an algebraic classification process, establishing
properties that discriminate small quasigroups with gongbtmgraphic properties from those with poor cryptographi
behaviour using the automated bootstrapping approach f8mmge et al., 2008). Once invariants of this nature have bee
established they have to be examined with respect to theaveur under compositions of quasigroups. After appreteri
relationships between algebraic and cryptographic ptasecan be established they can subsequently be exploitgd t
the modular construction of larger quasigroups for moreaife ciphers.
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