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1 Introduction

Computationally simple but cryptographically strong ciphers play an important role for efficient Computer Security tasks.
It is suggested in (Knapskog, 2008) that there is a need for simple cryptographic primitives to implement security in
an environment with end users connected with terminals having limited storage and processing power. Constructing
ciphers using the algebraic structures of Quasigroup leadsto particular simple yet efficient ciphers. Quasigroups are
structures very similar to groups with the primary difference that they are in general not associative. Stream ciphers can be
constructed from quasigroups using a permutation based scrambling technique (Maruti, 2006). For security considerations
the main goal of the scrambler is to maximize the entropy of the produced output. Depending on the quasigroup used the
cryptographic strength of the cipher can vary significantly. In order to find strong ciphers quasigroups have to be generated
and the resulting ciphers are tested with respect to standard statistical methods. Quasigroups are then categorised as
cryptographically strong or weak according to the outcome of these tests.

In our research we aim to tackle the problem from a different angle. We consider quasigroups that have already
been categorised with respect to their cryptographic properties. We then automatically classify these quasigroups with
respect to their algebraic properties, with the goal to identify properties common to cryptographically strong quasigroups
in order to use them for a goal directed construction of quasigroups for strong ciphers. Our work builds on previous
work (Sorge et al., 2008) that was concerned with the generation of classification theorems in quasigroup theory. A
bootstrapping algorithm was designed to successively refine a classification of quasigroups of a given finite order by
constructing algebraic invariants using machine learningtechniques, until a full classification into non-equivalent classes
was achieved. The procedure incorporated a set of diverse reasoning techniques, including first order resolution theorem
proving, model generation, satisfiability solving and computer algebra methods, and was successfully applied to produce
a number of novel classification theorems for loops and quasigroups with respect to isomorphism and isotopism.

2 Quasigroup Ciphers

Following (Pflugfelder, 1990), a quasigroupQ can be defined as a group of elements(1, 2, 3...n) along with a multiplica-
tion operator ‘∗’, such that for every elementx, y ∈ Q, there exists a unique solutionz ∈ Q such that the following two
conditions hold (1)x ∗ a = z, and (2)y ∗ b = z, where the elementsa, b andz belong to the QuasigroupQ.
These conditions ensure that a quasigroup can also be viewedas a Latin square; that is, each element ofQ occurs exactly
once in each row and each column of the multiplication table defining ‘∗’. Conditions (1) and (2) essentially postulate the
existence of unique left and right divisors for each elementin Q. This gives rise to an explicit definition of left and right
division operations:

Let (Q, ◦) be a Quasigroup, then two operations\ and/ on Q can be defined as:
(3) x ∗ (x\y) = y and x\(x ∗ y) = y (4) (y/x) ∗ x = y and (y ∗ x)/x = y

The following is an example of a QuasigroupQ of order4 given in terms of multiplication tables for all three operations:

* 1 2 3 4
1 2 3 1 4
2 4 1 3 2
3 3 4 2 1
4 1 2 4 3

\ 1 2 3 4
1 3 1 2 4
2 2 4 3 1
3 4 3 1 2
4 1 2 4 3

/ 1 2 3 4
1 4 2 1 3
2 1 4 3 2
3 3 1 2 4
4 2 3 4 3



Quasigroup Encryption

We can now define a quasigroup cipher in terms of encryption and decryption function following (Dimitrova and Markovski,
2004). Let(Q, ∗, \, /) be a Quasigroup anda1, a2, a3, ..., an ∈ Q. We define the encryption functionE with respect to
the keya ∈ Q as

Ea(a1, a2, a3, ..., an) = b1, b2, b3, ...bn

whereb1, b2, b3, ..., bn ∈ Q are computed by (i)b1 = a ∗ a1, and (ii)bi = bi−1 ∗ ai, for i = 2, . . . , n.

Quasigroup Decryption

The decryption process is similar to the encryption but the left division operation ’\’ is used as operation. The decryption
functionD is then define as:

Da(a1, a2, a3, ...an) = e1, e2, e3...en

where the original plaintext is computed by (i)e1 = a\a1, and (ii)ei = ai−1\ai, for i = 2, . . . , n.

3 Examining Cryptographic Properties

The cryptographic properties of quasigroup ciphers are primarily determined by subjecting the resulting pseudo-random
sequences to statistical tests for randomness. In (Markovski et al., 2004) eight bespoke statistical tests are performed by
random walk on torus examining the properties of strings obtained from specific quasigroup transformations. This can
provide an empirical classification of Quasigroups with respect to their cryptographic hardness. However, exhaustiveclas-
sification of quasigroups is prohibitive even for small sizes of quasigroups due to the sheer number of different structures
to consider. For example, there are over2 · 1030 different isomorphism classes of quasigroups of order10 (McKay et al.,
2004). Moreover, (Markovski et al., 2004) shows that quasigroups belonging to the same isomorphism class can behave
differently with respect to their cryptopgraphic properties and therefore considering quasigroups up to isomorphismwould
not be enough. In (Koscielny, 2002) a system for generating quasigroups for cryptographic applications is presented giving
a set of procedures implemented in Maple 7. It is also stated that practical ciphers should be constructed using quasigroups
of order between32 and256. Since the generation of structures of this size is non-trivial, the construction of larger quasi-
groups is done via composition of smaller ones and cryptographic properties are lifted from the smaller to larger structures.
Nevertheless the final cryptographic hardness can only be ensured using randomness test.

The goal of our work is to use these results as a bases on which to start an algebraic classification process, establishing
properties that discriminate small quasigroups with good cryptographic properties from those with poor cryptographic
behaviour using the automated bootstrapping approach from(Sorge et al., 2008). Once invariants of this nature have been
established they have to be examined with respect to their behaviour under compositions of quasigroups. After appropriate
relationships between algebraic and cryptographic properties can be established they can subsequently be exploited to aid
the modular construction of larger quasigroups for more effective ciphers.
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