
TSPASS - a Fair Monodic Temporal Logic Prover

Michel Ludwig Ullrich Hustadt

Department of Computer Science, University of Liverpool, Liverpool, UK
{Michel.Ludwig, U.Hustadt}@liverpool.ac.uk

1 Introduction

First-Order Temporal Logic, FOTL, is an extension of classical first-order logic by temporal operators for a discrete linear
model of time (isomorphic toN). The set of valid formulae of this logic is not recursively enumerable. However, the set
of valid monodic formulae is known to be finitely axiomatisable.

A first resolution-based calculus for monodic first-order temporal logic was introduced in Degtyarev et al. (2003).
Then, a more machine-oriented version, the fine-grained first-order temporal resolution calculus, was described in Konev
et al. (2005). A refinement of fine-grained temporal resolution, the ordered fine-grained temporal resolution with selection
calculus, is presented in Hustadt et al. (2005). However, while these calculi represent important steps towards fully auto-
mated reasoning in the monodic fragment, they still all haveone major drawback: they contain inference rules, reflecting
the inductive nature of reasoning in this logic, whose applicability is only semi-decidable as they depend on first-order side
conditions which in general are not decidable. This poses a problem for the development of refutation-complete theorem
provers based on these calculi.

In more detail, resolution-based calculi for monodic first-order temporal logic require that a given set of monodic
temporal formulae is transformed in a satisfiability equivalence preserving way into a clausal form consisting of four types
of temporal clauses, namelyinitial, universal, step andeventuality clauses. These clauses are then used in inferences by
the rules of the monodic fine-grained temporal resolution calculus. The majority of the rules, the so-called step resolution
rules, are based on standard (ordered) first-order resolution between different types of temporal clauses. The remaining
inference rules, the ground and the non-groundeventuality resolution rule, reflect the induction principle that holds for
monodic temporal logic over a flow of time isomorphic to the natural numbers. We present the non-ground eventuality
resolution rule; the ground version is similar:
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where∀x(Ai(x)⇒ © Bi(x)) are complex combinations of step clauses such that for alli ∈ {1, . . . , n}, the loop side
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clauses, are both valid. The formula
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Aj(x) is called aloop formula (for ♦L(x)).

In the realisation of the eventuality resolution rules a special resolution-based algorithm, called loop search algorithm,
is used to find∀x(Ai(x)⇒ © Bi(x)) for an eventuality♦L(x) satisfying the loop side conditions of the eventuality
resolution rule. To do so, the loop search algorithm constructs a sequence of sets containing universal and step clauses,
which are then saturated under a subset of the rules of fine-grained step resolution. For each attempt to apply a eventuality
resolution rule an instance of the loop search algorithm needs to be executed. As a consequence of the undecidability of
the validity of the loop side conditions, executions of the loop search algorithm cannot be guaranteed to terminate. It is
therefore possible, for example, that a partial loop formula, which is essential for a refutation, has been discovered by the
algorithm but, due to an infinite saturation process, this loop formula is never used in the computation of a consequence of
an application of the eventuality resolution rule, and, therefore, is not available to construct the refutation. Moreover, if we
try to solve the problem by delaying the application of the eventuality resolution rules until the set of temporal clauses is
first saturated under inferences with all other rules, then it might happen that the loop search algorithm will not be executed
at all as the saturation under these other inference rules isalso not guaranteed to terminate.

To solve this problem we have developed a calculus which onlycontains inference rules whose applicability is de-
cidable. The basic idea underlying the calculus is that witheach clause set which occurs in the sequence of clause sets
constructed by an invocation of the loop search algorithm wecan associate a unique marker literal which is added to every
clause occurring in such a set. In the loop search algorithm we can then work with just one clause set in which clauses
are separated by those marker literals, instead of constructing a sequence of clause sets. Furthermore, we do not even
have to use different instances of the loop search algorithmfor each application of an eventuality resolution rule, butcan
instead use one global clause set incorporating all of them.This then allows us to fairly perform step resolution inferences



Problem
Clauses Generated Time

ResultTeMP TSPASS TeMP TSPASS
0 19611 5707 0.481s 0.386s Satisfiable
1 21812 833 0.519s 0.075s Unsatisfiable
2 - 4827 - 0.372s Unsatisfiable
12 689 793 0.029s 0.073s Unsatisfiable
18 32395 5262 0.975s 0.389s Unsatisfiable

Table 1: Results obtained for the robot specification examples

which essentially drive forward all computations in a parallel way, whereas they were executed sequentially in the original
approach. This fair inference architecture has been presented in Ludwig and Hustadt (2008a) and in more detail in Ludwig
and Hustadt (2008b).

2 Implementation and Experimental Results

The fair inference architecture has been implemented in thetheorem prover TSPASS1, which is based on the first-order
resolution prover SPASS 3.0.

The practical performance of TSPASS has been analysed on different temporal problems and we have found it to be
competitive with TeMP. In the monodic first-order temporal logic prover TeMP (Hustadt et al., 2004), which is based on
the sequential reasoning approach described above, the first-order prover Vampire is used as a black box which saturates
sets containing the first-order translations of temporal clauses.

The experimental setting was as follows: the experiments were run on a PC equipped with an Intel Core 2 6400 CPU
and 3 GB of main memory. The execution timeout on each problemwas set to 12 minutes. For TeMP the input problems
were first transformed into its clausal input form and then TeMP was started on this clausal input without any additional
settings. TSPASS was instructed to perform subsumption-based loop search testing.

Table 1 shows the satisfiability status, the number of clauses generated and the median CPU time in seconds over three
different runs of TeMP and TSPASS for five representative examples (out of 39) based on the specifications of simple
foraging robots and some associated properties. The robot specification results from a novel application of monodic first-
order temporal logic in the verification of the behaviour of robot swarms. Further details can be found in (Behdenna et al.).
The specification of the robot transition system was given asproblem 0, and the remaining problems verify some properties
of the transition system. Each of these problems contains atleast seven eventualities. TeMP and TSPASS both terminate on
the satisfiable problem 0, but TeMP cannot solve the unsatisfiable problem 2 within the given time limit. Additionally, on
average TeMP derives more clauses and requires more execution time than TSPASS, except for problem 12. We attribute
this observation to the subsumption-based loop search testin TSPASS and to the fact that inferences in TSPASS which
have been computed once for a loop search instance do not haveto be computed again for further loop search saturations.
Further details and more examples can be found in (Ludwig andHustadt, 2008b).
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