TSPASS - a Fair Monodic Temporal Logic Prover

Michel Ludwig Ullrich Hustadt

Department of Computer Science, University of Liverpoalerpool, UK
{M chel . Ludwi g, U. Hustadt }@i verpool . ac. uk

1 Introduction

First-Order Temporal Logic, FOTL, is an extension of claakfirst-order logic by temporal operators for a discratedir
model of time (isomorphic t&N). The set of valid formulae of this logic is not recursivelyuenerable. However, the set
of valid monodic formulae is known to be finitely axiomatisable.

A first resolution-based calculus for monodic first-ordenperal logic was introduced in Degtyarev et al. (2003).
Then, a more machine-oriented version, the fine-graineddider temporal resolution calculus, was described ing<on
et al. (2005). A refinement of fine-grained temporal resohlytthe ordered fine-grained temporal resolution with selec
calculus, is presented in Hustadt et al. (2005). Howeveilevthese calculi represent important steps towards fultpa
mated reasoning in the monodic fragment, they still all have major drawback: they contain inference rules, reflgctin
the inductive nature of reasoning in this logic, whose ayftility is only semi-decidable as they depend on first-psibke
conditions which in general are not decidable. This pose®bl@m for the development of refutation-complete theorem
provers based on these calculi.

In more detail, resolution-based calculi for monodic fostter temporal logic require that a given set of monodic
temporal formulae is transformed in a satisfiability eqlénae preserving way into a clausal form consisting of fgpes
of temporal clauses, namelitial, universal, step andeventuality clauses. These clauses are then used in inferences by
the rules of the monodic fine-grained temporal resolutidoutas. The majority of the rules, the so-called step retsmiu
rules, are based on standard (ordered) first-order regnlbgtween different types of temporal clauses. The remgini
inference rules, the ground and the non-groavehtuality resolution rule, reflect the induction principle that holds for
monodic temporal logic over a flow of time isomorphic to théunal numbers. We present the non-ground eventuality
resolution rule; the ground version is similar:

V(A (z) = OB1(z)) ... Va(A,(z) = OBn(x)) OL(x)
o AL, (@)

(Og{es) ?

whereVz(A; ()= O B;(x)) are complex combinations of step clauses such that far all{1,...,n}, theloop side
conditionsvz (U A Bi(z) = —L(z)) andVz(U A Bi(z) = \/_, (A;(x))), with U being the current set of all universal
clauses, are both valid. The forml)}é??z1 A;(z) is called aoop formula (for O.L(x)).

In the realisation of the eventuality resolution rules acggegesolution-based algorithm, called loop search dtigor,
is used to findvz(A4;(z)= O B;(x)) for an eventuality) L(z) satisfying the loop side conditions of the eventuality
resolution rule. To do so, the loop search algorithm cortdra sequence of sets containing universal and step clauses
which are then saturated under a subset of the rules of feieeyt step resolution. For each attempt to apply a evettuali
resolution rule an instance of the loop search algorithnisée be executed. As a consequence of the undecidability of
the validity of the loop side conditions, executions of thefd search algorithm cannot be guaranteed to terminats. It i
therefore possible, for example, that a partial loop foanuihich is essential for a refutation, has been discoveyedbe
algorithm but, due to an infinite saturation process, thoglformula is never used in the computation of a consequénce o
an application of the eventuality resolution rule, andrefiere, is not available to construct the refutation. Meexoif we
try to solve the problem by delaying the application of therguality resolution rules until the set of temporal clauise
first saturated under inferences with all other rules, themght happen that the loop search algorithm will not be exet
at all as the saturation under these other inference rulsamot guaranteed to terminate.

To solve this problem we have developed a calculus which oahtains inference rules whose applicability is de-
cidable. The basic idea underlying the calculus is that wihh clause set which occurs in the sequence of clause sets
constructed by an invocation of the loop search algorithneareassociate a unique marker literal which is added to every
clause occurring in such a set. In the loop search algoritlencan then work with just one clause set in which clauses
are separated by those marker literals, instead of cotistgua sequence of clause sets. Furthermore, we do not even
have to use different instances of the loop search algoriithreach application of an eventuality resolution rule, tan
instead use one global clause set incorporating all of tHdmns. then allows us to fairly perform step resolution infezes



Problem Clauses Generated Time Result
TeMP | TSPASS| TeMP | TSPASS
0 19611 5707 0.481s| 0.386s Satisfiable
1 21812 833 0.519s| 0.075s | Unsatisfiable
2 - 4827 - 0.372s | Unsatisfiable
12 689 793 0.029s| 0.073s | Unsatisfiable

18 32395 5262 0.975s| 0.389s | Unsatisfiable

Table 1: Results obtained for the robot specification exaspl

which essentially drive forward all computations in a plelaliay, whereas they were executed sequentially in theraig
approach. This fair inference architecture has been pregémLudwig and Hustadt (2008a) and in more detail in Ludwig
and Hustadt (2008b).

2 Implementation and Experimental Results

The fair inference architecture has been implemented inhiberem prover TSPASSwhich is based on the first-order
resolution prover SPASS 3.0.

The practical performance of TSPASS has been analysed fenatif temporal problems and we have found it to be
competitive with TeMP. In the monodic first-order tempoadit prover TeMP (Hustadt et al., 2004), which is based on
the sequential reasoning approach described above, therfiter prover Vampire is used as a black box which saturates
sets containing the first-order translations of tempocaists.

The experimental setting was as follows: the experiments we on a PC equipped with an Intel Core 2 6400 CPU
and 3 GB of main memory. The execution timeout on each prollamset to 12 minutes. For TeMP the input problems
were first transformed into its clausal input form and theMPewas started on this clausal input without any additional
settings. TSPASS was instructed to perform subsumptieedmop search testing.

Table 1 shows the satisfiability status, the number of ckagseerated and the median CPU time in seconds over three
different runs of TeMP and TSPASS for five representativareias (out of 39) based on the specifications of simple
foraging robots and some associated properties. The rpboifiEation results from a novel application of monodictfirs
order temporal logic in the verification of the behaviourafot swarms. Further details can be found in (Behdenna)et al.
The specification of the robot transition system was givgmraklem 0, and the remaining problems verify some propertie
of the transition system. Each of these problems contalessat seven eventualities. TeMP and TSPASS both termimate o
the satisfiable problem 0, but TeMP cannot solve the unsailsfproblem 2 within the given time limit. Additionally, on
average TeMP derives more clauses and requires more exetinte than TSPASS, except for problem 12. We attribute
this observation to the subsumption-based loop searcintdGPASS and to the fact that inferences in TSPASS which
have been computed once for a loop search instance do notdhbeecomputed again for further loop search saturations.
Further details and more examples can be found in (Ludwig-arsiadt, 2008b).
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