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1 Introduction
Trying to track down and understand the causes of entailments in Description Logic based ontologies1 can be a wretched
and error prone task. Without some kind of tools support many users of ontology editing tools, such as Protégé-4, find
that it is impossible to determine the reasons for unsatisfiable classes or other undesirable entailments that can arise
during the process of constructing an ontology. Indeed, users of such tools have been seen to switch tool purely for
the benefits of explanation (Kalyanpur et al. (2007)). In recent years, there has been a significant amount of interest in
generating explanations for entailments in ontologies. Generally speaking the focus has moved from finding and generating
explanations that correspond closely with a particular proof technique, such as natural deduction, to finding and generating
explanations whose sub-structure is at the level of asserted axioms. This has given rise to explanations that, in their most
general form are known as Justifications (Kalyanpur et al. (2007)). A justification for an entailment in an ontology is a
minimal subset of the ontology that is sufficient for the entailment to hold. More precisely, given an ontology O such that
O |= η, J is justification for η with respect to O if J ⊆ O, J |= η, and for all J ′ ( J , J ′ 6|= η. Note that there may be
multiple, potentially overlapping, justifications for a given entailment.

2 Computing Justifications
Methods of computing justifications are broadly categorised into glass-box methods and black-box methods. While both
types of method depend upon reasoning, a glass-box implementation is specific to a given reasoner and therefore reasoning
technique, while a black-box method does not depend on a specific reasoner or reasoning technique.

Glass-box methods usually require thorough and non-trivial modifications to reasoner internals. The tableaux based
reasoner Pellet was augmented with tableaux tracing whereby, as the tableaux is expanded, Pellet tracks the axioms that
are used in the expansion. Computing all justifications for an entailment using this technique would require saturation of
the completion graph, and would require many optimisations to be rolled back. Therefore a hybrid approach, combining
glass-box methods with black-box methods and model diagnosis techniques is used to compute all justifications.

Black-box methods are much easier to implement than glass-box methods as they just require a reasoner2 that can
perform entailment testing, and some (goal directed) procedure to examine subsets of an ontology in order to compute
all justifications. Black-box implementations typically use some optimised “expand/shrink” strategy. For example, the
signature of an entailment is used as an input to a selection function that is repeatedly used to select larger and larger
subsets of the ontology until the entailment in question holds in the subset, at which point axioms in the subset that are not
relevant for the entailment are gradually pruned away.

The work presented in Kalyanpur et al. (2007) provides descriptions of a Pellet based glass-box implementation and
black-box implementation that uses a simple expand/shrink strategy. Empirical investigation showed that it is practical to
compute justifications for a range of ontologies varying in size and expressivity. More recently, we sampled entailments
from over twenty published ontologies ranging from ALC to SHOIQ, and from tens of axioms to tens of thousands
of axioms. With the necessary optimisations to the black-box implementation, it was found that black-box justification
finding can perform equally well, if not better, than glass-box justification finding—the tracing technique used in the glass
box justification finding does impose a slight overhead on satisfiability testing. Given that modifying an existing reasoner
to support glass-box justification finding is highly non-trivial, and binds the implementation to a specific reasoner, we
recommend the use and continued optimisation of black-box methods.

1Description Logics being decidable fragments of First Order Logic
2A reasoner being an implementation of a decision procedure for satisfiability testing etc.



3 Fine-grained Justifications: Laconic and Precise Justifications
Given a, potentially very large, ontology, justifications pick out the handfuls of axioms that are responsible for the en-
tailment. This is hugely useful since it allows a user to focus on what could be a very small part of the ontology. Thus,
when trying to understand the reasons for an entailment, the user can devote their attention to examining just a few axioms
compared to examining the whole ontology. However, it is frequently the case that not all parts of axioms are required for
an entailment to hold. This has given rise to the notion of fine-grained justifications, which are justifications whose axioms
do not contain any superfluous parts.

Numerous groups of researchers have identified fine-grained justifications as being important. However, the notion of
fine-grained justifications was only recently formalised in Horridge et al. (2008), which split fined-grained justifications
into laconic justifications and precise justifications. Using the well known structural transformation given in Plaisted and
Greenbaum (1986) to identify the “parts” of axioms, laconic justifications are justifications all of whose axioms do not
contain any superfluous parts and, more over, all of whose parts of axioms are as weak as possible. Precise justifications
are laconic justifications whose parts of axioms have been transferred into separate axioms. Laconic justifications are
geared towards user understanding, while precise justifications are geared towards repair.

The definition of laconic and precise justifications given in Horridge et al. (2008) is given with respect to the deductive
closure of an ontology. In practice, laconic and precise justifications are computed with respect to a filter on the deductive
closure of an ontology. The filter is used to select justifications that contain axioms that have a strong syntactic resemblance
to the axioms in the original ontology. In essence this is essential for usability. The filters used in practice tend to generate
from the ontology an expanded set of axioms that contains controlled, stepwise weakenings of the asserted axioms. While
this generally results in many more justifications for an entailment, various optimisations can be used to ensure good
algorithmic performance on real ontologies. Indeed, results presented in Horridge et al. (2008) show that it is practical to
compute laconic justifications using black-box methods for a range of published ontologies, with all laconic justifications
for an entailment typically being computed in tens of seconds on a standard laptop computer.

4 Lemmatising Justifications
We have observed that some justifications can be very difficult for people to understand. In a user study we found that
approximately 20% of justifications that were generated from over 100 entailments taken from published ontologies could
not be understood by a wide range of people. Justifications essentially gather the premises of a proof together and present
them to a user. The user is left to fill in the gaps and work out how the interplay between axioms in order to figure
out how they result in the conclusion, i.e. the entailment of interest. One of the areas that we are currently exploring
is the lemmatisation of justifications so as to make helpful intermediate inference steps explicit. A justification can be
lemmatised by replacing one or more axioms with summarising/bridging axiom. The result is a simpler and easier to
understand justification. The replacement axiom is essentially a lemma, with the axioms that were replaced being a
justification for this lemma. There can be multiple lemmatisations per justification, and the justification for lemmas
can themselves be lemmatised. This results in a proof DAG that can be used as an input to a presentation service for
use in end user tools such as Protégé-4. It should be noted that the notion of how easy or difficult a justification is
to understand is governed by a complexity model, which is used to predict whether or not a justification ought to be
lemmatised. We developed a complexity model based on the results from the aforementioned user study and used this to
compute lemmatised justifications for entailments from published ontologies. It was found that it was feasible to lemmatise
justifications, with many lemmatisations being computed in the order of tens of seconds.
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