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Abstract
Effectively propositional logic (EPR for short) is a fragment of first-order logic which can be effectively translated

into propositional logic. Much attention has been drawn to reasoning in EPR because of its ability to represent real life
applications such as bounded model checking and planning. In this paper we summarize some successul calculi in EPR
reasoning and propose combining generalisation into instantiation-based reasoning.

1 Introduction
Effectively propositional logic (EPR for short) is a fragment of first-order logic whose formulae are those in the Bernays-
Schønfinkel class. Much attention has been drawn to reasoning in EPR since several real life applications such as bounded
model checking and planning can be naturally and succinctly encoded as EPR formulae.

When skolemised, EPR formulae contains no function symbols and thus have a finite Herbrand Universe, which al-
lows one to translate them to propositional logic using grounding: substitutions of constants for variables of the formulae.
Grounding and the subsequent use of SAT solvers remains one of the most successful approaches to checking the satisfia-
bility of EPR formulae.

In this paper we summarize some successul calculi in EPR reasoning and propose combining generalisation into
instantiation-based reasoning.

2 Existing Methods

2.1 Competent methods
Pérez and Voronkov (2008) analysed reasoning in EPR from the perspective of proof length. They show that propositional
resolution for EPR may have exponentially longer refutations than resolution for EPR. It suggests that methods based on
ground instantiation may be weaker than non-ground methods. Though their analysis based on resolution, which has so
far been found not competitive on EPR formulae by the recent CASC competition, the conclusion finds some support from
other calculi which are competent in EPR reasoning, as explained in the following two paragraph.

Model Evolution, proposed by Baumgartner and Tinelli (2003), is seen as a lift of DPLL to first-order logic. The
calculus tries to build a model for input formulae. In the model, the presence of a predicate means that all of instances are
satisfied, except those which are also instances of the predicate’s instance, whose complement also appears in the model.
For example, if one model only contains P (x) and ¬P (c), then it stands for a partial model of {P (a), P (b), P (d), . . .}.

Instantiation based theorem proving, proposed by Ganzinger and Korovin (2003), is a cycle of generating instances
and SAT checking, which instances generation is guided by resolution. SAT checking is performed on an abstraction of
current problem. I. e. all the variables occurring are replace by ⊥ Korovin (2008). So, in SAT checking, P (x) and P (a),
abstracted to P (⊥) and P (a), are treated as different propositional variables. In some way, the ⊥ in P (⊥) can be seen as
any constant in the domain. Thus, instantiation based theorem proving makes itself a calculus on the level of EPR instead
of propositional logic.

2.2 Generalisation
Recently, Pérez and Voronkov (2008) introduces a generalisation rule and show that resolution for EPR may have ex-
ponentially longer proofs than resolution with generalisation. Suppose that in an EPR problem, the constants domain is
{c1, c2, . . . , c8}, and we have A[c3], A[c4], A[c5], . . . , A[c8], where A[x] is a quantifier-free formula with a free variable
x. To generalise all the ground cases of A[c3], A[c4], A[c5], . . . , A[c8], it would be much convenient to add ∀xA[x] to the
formulae set. However, ∀xA[x] only holds when x ∈ {c3, c4, . . . , c8}. So, we can add a constrained formula ∀xA[x].C,
C represents the constraints about x. Resolution extends to constrained formulae naturally, with the resolvent’s constraint
being the intersection of the constraints from the two input formulae.



3 Combining Generalisation Into Instantiation Based Reasoning
We propose to combine generalisation rule into instantiation based reasoning. Constrained formulae generated by gener-
alisation rule, together with instances generated by resolution rule, are added to the formulae set, which will be fed to a
SAT solver. The constraints will be discarded from constrained formulae after some constraints checking. We illustrate by
the following example.

Example 1 Suppose a formulae set is {P (x) ∨ Q(x),¬P (a),¬P (b),¬Q(b), R(x) ∨ ¬Q(x),¬R(b)}. Generalisation
rule produces the following constrained formulae. ¬P (x).x ∈ {a, b},¬Q(x).x ∈ {b},¬R(x).x ∈ {b}. These constraints
are satisfiable, as x ∈ {b}. Thus, we can add ¬P (x),¬Q(x),¬R(x) to existing formulae set, waiting for a SAT solver,
which will return unsatisfiable.

There are several unsolved problems in our method. One is what should be added when the constaints are unsatisfiable?
One solution is to add only those constrained formulae whose constraints, put together, are satisfiable. Heuristic methods
may be needed when chosing a subset of constrained formulae. Another solution is kind of splitting according to constants
domain. For example, if the constraints formulae are P (x).x ∈ S1, Q(x).x ∈ S2, where S1 ∩ S2 = φ. We can get
two duplications of existing formulae set, with all predicates subscribed by 1 and 2 respectively. Then replace existing
formulae set with the union of duplications, and discard those U1(c) where c /∈ S1 and V2(d) where d ∈ S1. For the
constraints formulae P (x).x ∈ S1, Q(x).x ∈ S2, we add P1(x), Q2(x).

Another problem is about lemma generating. In Ganzinger and Korovin (2003) method, when the problem is satisfiable,
the SAT solver may return some clauses it derived, which can be fed into the problem as lemmas. With generalisation rule
present, it is difficult to tell whether the returned clauses are universally valid or only on a specific subset.

4 Conclusions
We analyzed several successful calculi in EPR reasoning and proposed to combine generalisation into instantiation based
reasoning. Some unsolved problems are described. Comparison with de Moura and Bjørner (2008) is also an interesting
direction. Moreover, implementation is necessary to discovor how to balance over generalisation and instances generation
on different problems.
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