
Adapting Piecewise Fertilisation to Reason about Hypotheses

Louise A. Dennis?

?Department of Computer Science
University of Liverpool

L.A.Dennis@liverpool.ac.uk

Lucas Dixon†

†School of Informatics
University of Edinburgh

ldixon@inf.ed.ac.uk

1 Introduction
Fertilisation is the point in an inductive proof when the induction hypothesis is used to discharge (or rewrite) the induction
conclusion.

Piecewise Fertilisation was developed by Armando et al. (1999) for handling situations where logical connectives
appear in the theorem statement which make the fertilisation process less straightforward.

Of particular interest is the situation where an implication appears in the theorem statement. Typically a theorem of
the form

∀x.P (x) ⇒ Q(x), (1)

produces (in the case where x is a natural number) a step case of the form

(P (n) ⇒ Q(n)) ∧ P (s(n)) ` Q(s(n)), (2)

to discharge this piecewise fertilisation breaks this into two sub-problems:

P (s(n)) ⇒ P (n), (3)

and
Q(n) ⇒ Q(s(n)). (4)

This abstract describes preliminary work to take the idea of piecewise fertilisation and combine it with rippling tech-
niques to provide support for reasoning within the hypotheses of inductive proofs.

2 An Example: Counting an element in a List
Let us consider the theorem

∀x, l.x 6∈ l ⇒ cl(x, l) = 0. (5)

Where ∈ is list membership and cl is defined as

cl(a, []) = 0, (6)
cl(a, h :: t) = if (a = h) then s(cl(a, t)) else cl(a, t). (7)

A proof-planning style induction proof on this theorem proceeds by induction on l. The base case is easily discharged,
leaving the step case:

(∀z.z 6∈ t ⇒ cl(z, t) = 0) ∧ y 6∈ (h :: t) ` cl(y, h :: t) = 0, (8)

which ripples/rewrites to

(∀z.z 6∈ t ⇒ cl(z, t) = 0) ∧ y 6∈ (h :: t) ` if (y = h) then s(cl(y, t)) else cl(y, t) = 0, (9)

and then case splits to
(∀z.z 6∈ t ⇒ cl(z, t) = 0) ∧ y 6∈ (h :: t) ∧ y 6= h ` cl(y, t) = 0, (10)

(∀z.z 6∈ t ⇒ cl(z, t) = 0) ∧ y 6∈ (h :: t) ∧ y = h ` s(cl(y, t)) = 0. (11)



The second of these has a contradiction in the hypothesis (which can be detected by counter-example finding and
discharged easily)

In piecewise fertilisation the case-split of (2) into (3) and (4) is done by identifying an embedding between the ante-
cedant of the induction hypothesis and another hypothesis of the step case. In this case y 6∈ h :: t embeds into z 6∈ t
(taking into account that z is universally quantified). Instead of forming two sub-problems, as in piecewise fertilisation,
we suggest annotating the hypothesis, as for rippling, and rewriting directly.

(∀z.z 6∈ t ⇒ cl(z, t) = 0) ∧ y 6∈ (h :: t) ∧ y 6= h ` cl(y, t) = 0 (12)

(∀z.z 6∈ t ⇒ cl(z, t) = 0) ∧ y 6= h ∧ y 6∈ t ∧ y 6= h ` cl(y, t) = 0 (13)

Which then lets us infer that cl(y, t) = 0 and prove the step case.

3 Current Status
We have most of this process implemented in the IsaPlanner proof planning system (Dixon and Fleuriot, 2003). We are
successfully able to perform rippling in the hypothesis of the induction but are not, currently, able to complete the final
steps because of some short comings in the implementation of simplification in IsaPlanner – we are working on this.

We believe that this technique will prove useful for simplifying hypotheses in both fully automated and interactive
proofs.

Acknowledgements
This work was funded by EPSRC Platform Grant EP/E005713/1.

References
A. Armando, A. Smaill, and I. Green. Automatic synthesis of recursive programs: The proof-planning paradigm. Auto-

mated Software Engineering, 6(4):329–256, 1999.

L. Dixon and J. D. Fleuriot. IsaPlanner: A prototype proof planner in Isabelle. In 19th International Conference on
Automated Deduction (CADE’2003), volume 2741 of LNCS, 2003.


